unicode字符集
ASCII编码,将英文存储到计算机ASCII(American Standard Code for Information Interchange,美国信息互换标准代码)是一套基于拉丁字母的字符编码,共收录了 128 个字符,用一个字节就可以存储,它等同于国际标准 ISO/IEC 646。
ASCII 规范于 1967 年第一次发布,最后一次更新是在 1986 年,它包含了 33 个控制字符(具有某些特殊功能但是无法显示的字符)和 95 个可显示字符。
ASCII码一览表,ASCII码对照表
00000000 | 0 | 00 | NUL (NULL) | 空字符 |
00000001 | 1 | 01 | SOH (Start Of Headling) | 标题开始 |
00000010 | 2 | 02 | STX (Start Of Text) | 正文开始 |
00000011 | 3 | 03 | ETX (End Of Text) | 正文结束 |
00000100 | 4 | 04 | EOT (End Of Transmission) | 传输结束 |
00000101 | 5 | 05 | ENQ (Enquiry) | 请求 |
00000110 | 6 | 06 | ACK (Acknowledge) | 回应/响应/收到通知 |
00000111 | 7 | 07 | BEL (Bell) | 响铃 |
00001000 | 8 | 08 | BS (Backspace) | 退格 |
00001001 | 9 | 09 | HT (Horizontal Tab) | 水平制表符 |
00001010 | 10 | 0A | LF/NL(Line Feed/New Line) | 换行键 |
00001011 | 11 | 0B | VT (Vertical Tab) | 垂直制表符 |
00001100 | 12 | 0C | FF/NP (Form Feed/New Page) | 换页键 |
00001101 | 13 | 0D | CR (Carriage Return) | 回车键 |
00001110 | 14 | 0E | SO (Shift Out) | 不用切换 |
00001111 | 15 | 0F | SI (Shift In) | 启用切换 |
00010000 | 16 | 10 | DLE (Data Link Escape) | 数据链路转义 |
00010001 | 17 | 11 | DC1/XON | 设备控制1/传输开始 |
00010010 | 18 | 12 | DC2 (Device Control 2) | 设备控制2 |
00010011 | 19 | 13 | DC3/XOFF | 设备控制3/传输中断 |
00010100 | 20 | 14 | DC4 (Device Control 4) | 设备控制4 |
00010101 | 21 | 15 | NAK (Negative Acknowledge) | 无响应/非正常响应/拒绝接收 |
00010110 | 22 | 16 | SYN (Synchronous Idle) | 同步空闲 |
00010111 | 23 | 17 | ETB (End of Transmission Block) | 传输块结束/块传输终止 |
00011000 | 24 | 18 | CAN (Cancel) | 取消 |
00011001 | 25 | 19 | EM (End of Medium) | 已到介质末端/介质存储已满/介质中断 |
00011010 | 26 | 1A | SUB (Substitute) | 替补/替换 |
00011011 | 27 | 1B | ESC (Escape) | 逃离/取消 |
00011100 | 28 | 1C | FS (File Separator) | 文件分割符 |
00011101 | 29 | 1D | GS (Group Separator) | 组分隔符/分组符 |
00011110 | 30 | 1E | RS (Record Separator) | 记录分离符 |
00011111 | 31 | 1F | US (Unit Separator) | 单元分隔符 |
32 | 20 | (Space) | 空格 | |
33 | 21 | ! | ||
34 | 22 | “ | ||
35 | 23 | # | ||
36 | 24 | $ | ||
37 | 25 | % | ||
38 | 26 | & | ||
39 | 27 | ‘ | ||
40 | 28 | ( | ||
41 | 29 | ) | ||
42 | 2A | * | ||
43 | 2B | + | ||
44 | 2C | , | ||
45 | 2D | – | ||
46 | 2E | . | ||
47 | 2F | / | ||
48 | 30 | 0 | ||
49 | 31 | 1 | ||
50 | 32 | 2 | ||
51 | 33 | 3 | ||
52 | 34 | 4 | ||
53 | 35 | 5 | ||
54 | 36 | 6 | ||
55 | 37 | 7 | ||
56 | 38 | 8 | ||
57 | 39 | 9 | ||
58 | 3A | : | ||
59 | 3B | ; | ||
60 | 3C | < | ||
61 | 3D | = | ||
62 | 3E | > | ||
63 | 3F | ? | ||
64 | 40 | @ | ||
65 | 41 | A | ||
66 | 42 | B | ||
67 | 43 | C | ||
68 | 44 | D | ||
69 | 45 | E | ||
70 | 46 | F | ||
71 | 47 | G | ||
72 | 48 | H | ||
73 | 49 | I | ||
74 | 4A | J | ||
75 | 4B | K | ||
76 | 4C | L | ||
77 | 4D | M | ||
78 | 4E | N | ||
79 | 4F | O | ||
80 | 50 | P | ||
81 | 51 | Q | ||
82 | 52 | R | ||
83 | 53 | S | ||
84 | 54 | T | ||
85 | 55 | U | ||
86 | 56 | V | ||
87 | 57 | W | ||
88 | 58 | X | ||
89 | 59 | Y | ||
90 | 5A | Z | ||
91 | 5B | [ | ||
92 | 5C | |||
93 | 5D | ] | ||
94 | 5E | ^ | ||
95 | 5F | _ | ||
96 | 60 | ` | ||
97 | 61 | a | ||
98 | 62 | b | ||
99 | 63 | c | ||
100 | 64 | d | ||
101 | 65 | e | ||
102 | 66 | f | ||
103 | 67 | g | ||
104 | 68 | h | ||
105 | 69 | i | ||
106 | 6A | j | ||
107 | 6B | |||
108 | 6C | l | ||
109 | 6D | m | ||
110 | 6E | n | ||
111 | 6F | o | ||
112 | 70 | p | ||
113 | 71 | q | ||
114 | 72 | r | ||
115 | 73 | s | ||
116 | 74 | t | ||
117 | 75 | u | ||
118 | 76 | v | ||
119 | 77 | w | ||
120 | 78 | x | ||
121 | 79 | y | ||
122 | 7A | z | ||
123 | 7B | { | ||
124 | 7C | | | ||
125 | 7D | } | ||
126 | 7E | ~ | ||
01111111 | 127 | 7F | DEL (Delete) | 删除 |
对控制字符的解释ASCII 编码中第 0~31 个字符(开头的 32 个字符)以及第 127 个字符(最后一个字符)都是不可见的(无法显示),但是它们都具有一些特殊功能,所以称为控制字符( Control Character)或者功能码(Function Code)。
这 33 个控制字符大都与通信、数据存储以及老式设备有关,有些在现代电脑中的含义已经改变了。
有些控制符需要一定的计算机功底才能理解,初学者可以跳过,选择容易的理解即可。下面列出了部分控制字符的具体功能:
NUL (0)NULL,空字符。空字符起初本意可以看作为 NOP(中文意为空操作,就是啥都不做的意思),此位置可以忽略一个字符。
之所以有这个空字符,主要是用于计算机早期的记录信息的纸带,此处留个 NUL 字符,意思是先占这个位置,以待后用,比如你哪天想起来了,在这个位置在放一个别的啥字符之类的。
后来呢,NUL 被用于C语言中,表示字符串的结束,当一个字符串中间出现 NUL 时,就意味着这个是一个字符串的结尾了。这样就方便按照自己需求去定义字符串,多长都行,当然只要你内存放得下,然后最后加一个 ,即空字符,意思是当前字符串到此结束。
SOH (1)Start Of Heading,标题开始。如果信息沟通交流主要以命令和消息的形式的话,SOH 就可以用于标记每个消息的开始。
1963年,最开始 ASCII 标准中,把此字符定义为 Start of Message,后来又改为现在的 Start Of Heading。
现在,这个 SOH 常见于主从(master-slave)模式的 RS232 的通信中,一个主设备,以 SOH 开头,和从设备进行通信。这样方便从设备在数据传输出现错误的时候,在下一次通信之前,去实现重新同步(resynchronize)。如果没有一个清晰的类似于 SOH 这样的标记,去标记每个命令的起始或开头的话,那么重新同步,就很难实现了。
STX (2) 和 ETX (3)STX 表示 Start Of Text,意思是“文本开始”;ETX 表示 End Of Text,意思是“文本结束”。
通过某种通讯协议去传输的一个数据(包),称为一帧的话,常会包含一个帧头,包含了寻址信息,即你是要发给谁,要发送到目的地是哪里,其后跟着真正要发送的数据内容。
而 STX,就用于标记这个数据内容的开始。接下来是要传输的数据,最后是 ETX,表明数据的结束。
而中间具体传输的数据内容,ASCII 并没有去定义,它和你所用的传输协议有关。
……(帧头信息,比如包含了目的地址,表明你发送给谁等等) | STX(表明数据开始) | ……(真正要传输的数据) | ETX(表明数据结束 |
BEL (7)BELl,响铃。在 ASCII 编码中,BEL 是个比较有意思的东西。BEL 用一个可以听得见的声音来吸引人们的注意,既可以用于计算机,也可以用于周边设备(比如打印机)。
注意,BEL 不是声卡或者喇叭发出的声音,而是蜂鸣器发出的声音,主要用于报警,比如硬件出现故障时就会听到这个声音,有的计算机操作系统正常启动也会听到这个声音。蜂鸣器没有直接安装到主板上,而是需要连接到主板上的一种外设,现代很多计算机都不安装蜂鸣器了,即使输出 BEL 也听不到声音,这个时候 BEL 就没有任何作用了。
BS (8)BackSpace,退格键。退格键的功能,随着时间变化,意义也变得不同了。
退格键起初的意思是,在打印机和电传打字机上,往回移动一格光标,以起到强调该字符的作用。比如你想要打印一个 a,然后加上退格键后,就成了 aBS^。在机械类打字机上,此方法能够起到实际的强调字符的作用,但是对于后来的 CTR 下时期来说,就无法起到对应效果了。
而现代所用的退格键,不仅仅表示光标往回移动了一格,同时也删除了移动后该位置的字符。
HT (9)Horizontal Tab,水平制表符,相当于 Table/Tab 键。
水平制表符的作用是用于布局,它控制输出设备前进到下一个表格去处理。而制表符 Table/Tab 的宽度也是灵活不固定的,只不过在多数设备上制表符 Tab 都预定义为 4 个空格的宽度。
水平制表符 HT 不仅能减少数据输入者的工作量,对于格式化好的文字来说,还能够减少存储空间,因为一个Tab键,就代替了 4 个空格。
LF (10)Line Feed,直译为“给打印机等喂一行”,也就是“换行”的意思。LF 是 ASCII 编码中常被误用的字符之一。
LF 的最原始的含义是,移动打印机的头到下一行。而另外一个 ASCII 字符,CR(Carriage Return)才是将打印机的头移到最左边,即一行的开始(行首)。很多串口协议和 MS-DOS 及 Windows 操作系统,也都是这么实现的。
而C语言和 Unix 操作系统将 LF 的含义重新定义为“新行”,即 LF 和 CR 的组合效果,也就是回车且换行的意思。
从程序的角度出发,C语言和 Unix 对 LF 的定义显得更加自然,而 MS-DOS 的实现更接近于 LF 的本意。
现在人们常将 LF 用做“新行(newline)”的功能,大多数文本编辑软件也都可以处理单个 LF 或者 CR/LF 的组合了。
VT (11)Vertical Tab,垂直制表符。它类似于水平制表符 Tab,目的是为了减少布局中的工作,同时也减少了格式化字符时所需要存储字符的空间。VT 控制符用于跳到下一个标记行。
说实话,还真没看到有些地方需要用 VT,因为一般在换行的时候都是用 LF 代替 VT 了。
FF (12)Form Feed,换页。设计换页键,是用来控制打印机行为的。当打印机收到此键码的时候,打印机移动到下一页。
不同的设备的终端对此控制符所表现的行为各不同,有些会清除屏幕,有些只是显示^L字符,有些只是新换一行而已。例如,Unix/Linux 下的 Bash Shell 和 Tcsh 就把 FF 看做是一个清空屏幕的命令。
CR (13)Carriage return,回车,表示机器的滑动部分(或者底座)返回。
CR 回车的原意是让打印头回到左边界,并没有移动到下一行的意思。随着时间的流逝,后来人们把 CR 的意思弄成了 Enter 键,用于示意输入完毕。
在数据以屏幕显示的情况下,人们按下 Enter 的同时,也希望把光标移动到下一行,因此C语言和 Unix 重新定义了 CR 的含义,将其表示为移动到下一行。当输入 CR 时,系统也常常隐式地将其转换为LF。
SO (14) 和 SI (15)SO,Shift Out,不用切换;SI,Shift In,启用切换。
早在 1960s 年代,设计 ASCII 编码的美国人就已经想到了,ASCII 编码不仅仅能用于英文,也要能用于外文字符集,这很重要,定义 Shift In 和 Shift Out 正是考虑到了这点。
最开始,其意为在西里尔语和拉丁语之间切换。西里尔语 ASCII(也即 KOI-7 编码)将 Shift 作为一个普通字符,而拉丁语 ASCII(也就是我们通常所说的 ASCII)用 Shift 去改变打印机的字体,它们完全是两种含义。
在拉丁语 ASCII 中,SO 用于产生双倍宽度的字符(类似于全角),而用 SI 打印压缩的字体(类似于半角)。
DLE (16)Data Link Escape,数据链路转义。
有时候我们需要在通信过程中发送一些控制字符,但是总有一些情况下,这些控制字符被看成了普通的数据流,而没有起到对应的控制效果,ASCII 编码引入 DLE 来解决这类问题。
如果数据流中检测到了 DLE,数据接收端会对数据流中接下来的字符另作处理。但是具体如何处理,ASCII 规范中并没有定义,只是弄了个 DLE 去打断正常的数据流,告诉接下来的数据要特殊对待。
DC1 (17)Device Control 1,或者 XON – Transmission on。
这个 ASCII 控制符尽管原先定义为 DC1, 但是现在常表示为 XON,用于串行通信中的软件流控制。其主要作用为,在通信被控制符 XOFF 中断之后,重新开始信息传输。
用过串行终端的人应该还记得,当有时候数据出错了,按 Ctrl+Q(等价于XON)有时候可以起到重新传输的效果。这是因为,此 Ctrl+Q 键盘序列实际上就是产生 XON 控制符,它可以将那些由于终端或者主机方面,由于偶尔出现的错误的 XOFF 控制符而中断的通信解锁,使其正常通信。
DC3 (19)Device Control 3,或者 XOFF(Transmission off,传输中断)。
EM (25)End of Medium,已到介质末端,介质存储已满。
EM 用于,当数据存储到达串行存储介质末尾的时候,就像磁带或磁头滚动到介质末尾一样。其用于表述数据的逻辑终点,即不必非要是物理上的达到数据载体的末尾。
FS(28)File Separator,文件分隔符。FS 是个很有意思的控制字符,它可以让我们看到 1960s 年代的计算机是如何组织的。
我们现在习惯于随机访问一些存储介质,比如 RAM、磁盘等,但是在设计 ASCII 编码的那个年代,大部分数据还是顺序的、串行的,而不是随机访问的。此处所说的串行,不仅仅指的是串行通信,还指的是顺序存储介质,比如穿孔卡片、纸带、磁带等。
在串行通信的时代,设计这么一个用于表示文件分隔的控制字符,用于分割两个单独的文件,是一件很明智的事情。
GS(29)Group Separator,分组符。
ASCII 定义控制字符的原因之一就是考虑到了数据存储。
大部分情况下,数据库的建立都和表有关,表包含了多条记录。同一个表中的所有记录属于同一类型,不同的表中的记录属于不同的类型。
而分组符 GS 就是用来分隔串行数据存储系统中的不同的组。值得注意的是,当时还没有使用 Excel 表格,ASCII 时代的人把它叫做组。
RS(30)Record Separator,记录分隔符,用于分隔一个组或表中的多条记录。
US(31)Unit Separator,单元分隔符。
在 ASCII 定义中,数据库中所存储的最小的数据项叫做单元(Unit)。而现在我们称其字段(Field)。单元分隔符 US 用于分割串行数据存储环境下的不同单元。
现在的数据库实现都要求大部分类型都拥有固定的长度,尽管有时候可能用不到,但是对于每一个字段,却都要分配足够大的空间,用于存放最大可能的数据。
这种做法的弊端就是占用了大量的存储空间,而 US 控制符允许字段具有可变的长度。在 1960s 年代,数据存储空间很有限,用 US 将不同单元分隔开,能节省很多空间。
DEL (127)Delete,删除。
有人也许会问,为何 ASCII 编码中其它控制字符的值都很小(即 0~31),而 DEL 的值却很大呢(为 127)?
这是由于这个特殊的字符是为纸带而定义的。在那个年代,绝大多数的纸带都是用7个孔洞去编码数据的。而 127 这个值所对应的二进制值为111 1111(所有 7 个比特位都是1),将 DEL 用在现存的纸带上时,所有的洞就都被穿孔了,就把已经存在的数据都擦除掉了,就起到了删除的作用。
Unicode字符集,将全世界的文字存储到计算机ASCII、GB2312、GBK、Shift_Jis、ISO/IEC 8859 等地区编码都是各个国家为了自己的语言文化开发的,不具有通用性,在一种编码下开发的软件或者编写的文档,拿到另一种编码下就会失效,必须提前使用程序转码,非常麻烦。
人们迫切希望有一种编码能够统一世界各地的字符,计算机只要安装了这一种字编码,就能支持使用世界上所有的文字,再也不会出现乱码,再也不需要转码了,这对计算机的数据传递来说是多么的方便呀!
就在这种呼吁下,Unicode 诞生了。Unicode 也称为统一码、万国码;看名字就知道,Unicode 希望统一所有国家的字符编码。
Unicode 于 1994 年正式公布第一个版本,现在的规模可以容纳 100 多万个符号,是一个很大的集合。
有兴趣的读取可以转到 https://unicode-table.com/cn/ 查看 Unicode 包含的所有字符,以及各个国家的字符是如何分布的。
这个网站不太稳定,随时可能无法访问,不要问我为什么,访问不了也不要找我,没有比它更好的网站了。Windows、Linux、Mac OS 等常见操作系统都已经从底层(内核层面)开始支持 Unicode,大部分的网页和软件也使用 Unicode,Unicode 是大势所趋。
不过由于历史原因,目前的计算机仍然安装了 ASCII 编码以及 GB2312、GBK、Big5、Shift-JIS 等地区编码,以支持不使用 Unicode 的软件或者文档。内核在处理字符时,一般会将地区编码先转换为 Unicode,再进行下一步处理。
Unicode 字符集是如何存储的Unicode 是一套字符集,而不是一套字符编码,它们之间究竟有什么区别呢?
严格来说,字符集和字符编码不是一个概念:
字符集定义了字符和二进制的对应关系,为每个字符分配了唯一的编号。可以将字符集理解成一个很大的表格,它列出了所有字符和二进制的对应关系,计算机显示文字或者存储文字,就是一个查表的过程。
而字符编码规定了如何将字符的编号存储到计算机中。如果使用了类似 GB2312 和 GBK 的变长存储方案(不同的字符占用的字节数不一样),那么为了区分一个字符到底使用了几个字节,就不能将字符的编号直接存储到计算机中,字符编号在存储之前必须要经过转换,在读取时还要再逆向转换一次,这套转换方案就叫做字符编码。
有的字符集在制定时就考虑到了编码的问题,是和编码结合在一起的,例如 ASCII、GB2312、GBK、BIG5 等,所以无论称作字符集还是字符编码都无所谓,也不好区分两者的概念。而有的字符集只管制定字符的编号,至于怎么存储,那是字符编码的事情,Unicode 就是一个典型的例子,它只是定义了全球文字的唯一编号,我们还需要 UTF-8、UTF-16、UTF-32 这几种编码方案将 Unicode 存储到计算机中。
Unicode 可以使用的编码方案有三种,分别是:
UTF-8:一种变长的编码方案,使用 1~6 个字节来存储;
UTF-32:一种固定长度的编码方案,不管字符编号大小,始终使用 4 个字节来存储;
UTF-16:介于 UTF-8 和 UTF-32 之间,使用 2 个或者 4 个字节来存储,长度既固定又可变。
UTF 是 Unicode Transformation Format 的缩写,意思是“Unicode转换格式”,后面的数字表明至少使用多少个比特位(Bit)来存储字符。
1) UTF-8UTF-8 的编码规则很简单:
如果只有一个字节,那么最高的比特位为 0,这样可以兼容 ASCII;
如果有多个字节,那么第一个字节从最高位开始,连续有几个比特位的值为 1,就使用几个字节编码,剩下的字节均以 10 开头。
具体的表现形式为:
0xxxxxxx:单字节编码形式,这和 ASCII 编码完全一样,因此 UTF-8 是兼容 ASCII 的;
110xxxxx 10xxxxxx:双字节编码形式(第一个字节有两个连续的 1);
1110xxxx 10xxxxxx 10xxxxxx:三字节编码形式(第一个字节有三个连续的 1);
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx:四字节编码形式(第一个字节有四个连续的 1)。
xxx 就用来存储 Unicode 中的字符编号。
下面是一些字符的 UTF-8 编码实例(绿色部分表示本来的 Unicode 编号):
01001110 | 11100110 | 00101110 11101100 |
4E | E6 | 2E EC |
01001110 | 11000011 10100110 | 11100010 10111011 10101100 |
4E | C3 A6 | E2 BB AC |
对于常用的字符,它的 Unicode 编号范围是 0 ~ FFFF,用 1~3 个字节足以存储,只有及其罕见,或者只有少数地区使用的字符才需要 4~6个字节存储。
2) UTF-32UTF-32 是固定长度的编码,始终占用 4 个字节,足以容纳所有的 Unicode 字符,所以直接存储 Unicode 编号即可,不需要任何编码转换。浪费了空间,提高了效率。
3) UTF-16UFT-16 比较奇葩,它使用 2 个或者 4 个字节来存储。
对于 Unicode 编号范围在 0 ~ FFFF 之间的字符,UTF-16 使用两个字节存储,并且直接存储 Unicode 编号,不用进行编码转换,这跟 UTF-32 非常类似。
对于 Unicode 编号范围在 10000~10FFFF 之间的字符,UTF-16 使用四个字节存储,具体来说就是:将字符编号的所有比特位分成两部分,较高的一些比特位用一个值介于 D800~DBFF 之间的双字节存储,较低的一些比特位(剩下的比特位)用一个值介于 DC00~DFFF 之间的双字节存储。
如果你不理解什么意思,请看下面的表格:
位于 D800~0xDFFF 之间的 Unicode 编码是特别为四字节的 UTF-16 编码预留的,所以不应该在这个范围内指定任何字符。如果你真的去查看 Unicode 字符集,会发现这个区间内确实没有收录任何字符。
UTF-16 要求在制定 Unicode 字符集时必须考虑到编码问题,所以真正的 Unicode 字符集也不是随意编排字符的。
对比以上三种编码方案首先,只有 UTF-8 兼容 ASCII,UTF-32 和 UTF-16 都不兼容 ASCII,因为它们没有单字节编码。
1) UTF-8 使用尽量少的字节来存储一个字符,不但能够节省存储空间,而且在网络传输时也能节省流量,所以很多纯文本类型的文件(例如各种编程语言的源文件、各种日志文件和配置文件等)以及绝大多数的网页(例如百度、新浪、163等)都采用 UTF-8 编码。
UTF-8 的缺点是效率低,不但在存储和读取时都要经过转换,而且在处理字符串时也非常麻烦。例如,要在一个 UTF-8 编码的字符串中找到第 10 个字符,就得从头开始一个一个地检索字符,这是一个很耗时的过程,因为 UTF-8 编码的字符串中每个字符占用的字节数不一样,如果不从头遍历每个字符,就不知道第 10 个字符位于第几个字节处,就无法定位。
不过,随着算法的逐年精进,UTF-8 字符串的定位效率也越来越高了,往往不再是槽点了。
2) UTF-32 是“以空间换效率”,正好弥补了 UTF-8 的缺点,UTF-32 的优势就是效率高:UTF-32 在存储和读取字符时不需要任何转换,在处理字符串时也能最快速地定位字符。例如,在一个 UTF-32 编码的字符串中查找第 10 个字符,很容易计算出它位于第 37 个字节处,直接获取就行,不用再逐个遍历字符了,没有比这更快的定位字符的方法了。
但是,UTF-32 的缺点也很明显,就是太占用存储空间了,在网络传输时也会消耗很多流量。我们平常使用的字符编码值一般都比较小,用一两个字节存储足以,用四个字节简直是暴殄天物,甚至说是不能容忍的,所以 UTF-32 在应用上不如 UTF-8 和 UTF-16 广泛。
3) UTF-16 可以看做是 UTF-8 和 UTF-32 的折中方案,它平衡了存储空间和处理效率的矛盾。对于常用的字符,用两个字节存储足以,这个时候 UTF-16 是不需要转换的,直接存储字符的编码值即可。
Windows 内核、.NET Framework、Cocoa、Java String 内部采用的都是 UTF-16 编码。UTF-16 是幕后的功臣,我们在编辑源代码和文档时都是站在前台,所以一般感受不到,其实很多文本在后台处理时都已经转换成了 UTF-16 编码。
不过,UNIX 家族的操作系统(Linux、Mac OS、iOS 等)内核都采用 UTF-8 编码,我们就不去争论谁好谁坏了。
宽字符和窄字符(多字节字符)有的编码方式采用 1~n 个字节存储,是变长的,例如 UTF-8、GB2312、GBK 等;如果一个字符使用了这种编码方式,我们就将它称为多字节字符,或者窄字符。
有的编码方式是固定长度的,不管字符编号大小,始终采用 n 个字节存储,例如 UTF-32、UTF-16 等;如果一个字符使用了这种编码方式,我们就将它称为宽字符。
Unicode 字符集可以使用窄字符的方式存储,也可以使用宽字符的方式存储;GB2312、GBK、Shift-JIS 等国家编码一般都使用窄字符的方式存储;ASCII 只有一个字节,无所谓窄字符和宽字符。