协方差计算公式是什么?
1、公式:cov(x,y)=EXY-EX*EY 协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望。
2、协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
3、协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。
协方差运算律?
协方差的计算公式为cov(X,Y)=E[(X-E[X])(Y-E[Y])],这里的E[X]代表变量X的期望。
从直观上来看,协方差表示的是两个变量总体误差的期望。如果其中一个大于自身的期望值时另外一个也大于自身的期望值,两个变量之间的协方差就是正值;如果其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。
反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。协方差为0的两个随机变量称为是不相关的。
协方差的计算公式?
协方差公式为cov(X,Y)=E{[X-E(X)].[Y-E(Y)]}
协方差是针对两个随机变量X和Y来说的如果E{[X-E(X)].[Y-E(Y)]}存在,则成为X与Y的协方差,记作cov(X,Y)。
其中E()意思是随机变量的期望。
协方差的计算公式是什么,能不能举个例子?
cov(x,y)=EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY
协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论
举例:
Xi 1.1 1.9 3
Yi 5.0 10.4 14.6
E(X) = (1.1+1.9+3)/3=2
E(Y) = (5.0+10.4+14.6)/3=10
E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02
Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02
此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 – 4=4.60-4=0.6 σx=0.77
D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93
X,Y的相关系数:
r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979
表明这组数据X,Y之间相关性很好!
协方差公式?
协方差计算式为COV(X,Y)=E(XY)-E(X)E(Y)。这里的E[X]代表变量X的期。
协方差用于表示变量间的相互关系,变量间的相互关系一般有三种:正相关,负相关和不相关。
正相关:假设有两个变量x和y,若x越大y越大;x越小y越小则x和y为正相关。
负相关:假设有两个变量x和y,若x越大y越小;x越小y越大则x和y为负相关。
不相关:假设有两个变量x和y,若x和y变化无关联则x和y为负相关。
协方差在农业上的应用:
农业科学实验中,经常会出现可以控制的质量因子和不可以控制的数量因子同时影响实验结果的情况,这时就需要采用协方差分析的统计处理方法,将质量因子与数量因子(也称协变量)综合起来加以考虑。
比如,要研究3种肥料对苹果产量的实际效应,而各棵苹果树头年的“基础产量”不一致,但对试验结果又有一定的影响。要消除这一因素带来的影响,就需将各棵苹果树第1年年产量这一因素作为协变量进行协方差分析,才能得到正确的实验结果。
协方差怎么计算?
定义 E[(X-E(X))(Y-E(Y))] 称为随机变量X和Y的协方差, 记作COV(X,Y), 即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。
通过推到 E[(X-E(X))(Y-E(Y))] = E(XY)-E(X)E(Y)
实例计算:
有两个变量分别是X和Y,其值分别如下,
Xi : 2 3 4 5
Yi : 6 7 8 9
计算期望:
E(X) = ( 2 + 3 + 4 + 5 ) / 4 = 3.5
E(Y) = ( 6 + 7 + 8 + 9 ) / 4 = 7.5
E(XY)=( 2*6 +3*7 +4*8 +5*9 ) / 4 = 27.5
计算协方差:
Cov(X,Y) = E(XY) – E(X)E(Y) = 27.5 – 26.25 = 1.25
因此,X与Y的协方差值为:1.25