抛物线的几何性质归纳?(抛物线的几何性质归纳 百度百科)

抛物线的几何性质归纳?

抛物线(1)y^2=2pX(p>0)的开口向右,对称轴为X轴,焦点坐标为(P/2,0),准线方程为X=一p/2;(2)y^2=-2pX(p>0)的开口向左,対称轴为X轴,焦点坐标为(-p/2,0),(3)Ⅹ^2=2py(p>0)的开口向上,对称轴为y轴,焦点坐标为(0,p/2),(4)X^2=-2py(p>0)的开口向下,对称轴为y轴焦点坐标为(0,一p/2),准线方程为y=p/2

抛物线是属于几何学的吗?

属于。

平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。

抛物线的性质:1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为P ([-b/2a ,(4ac-b2)/4a ]

当-b/2a=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

抛物线的性质及推导过程?

抛物线是轴对称图形,a决定开口方向a的绝对值决定开口大小,在轴的两侧增减性不同。有最值。

抛物线的特点和性质?

抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 :y = ax *+ bx + c

  就是y等于ax 的平方加上百 bx再加上 c

  a > 0时开口向上

  a < 0时开口向下

  c = 0时抛物度线经过原点

  b = 0时抛物线对称轴为y轴

  还有顶点式y = a(x+h)* + k

  就是y等于a乘以(x+h)的平方+k

  -h是顶点坐标知的x

  k是顶点坐标的y

  一般用于求最大值与最小值

  抛物道线标回准方程:y^2=2px

抛物线及其性质基本知识?

抛物线在合适的坐标变换下,也可看成二次函数图像。

一、抛物线的基本知识点

1、定义:平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。

2、抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0).

3、抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

4、二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

5、一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab<0),对称轴在y轴右。

6、常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。

抛物线的简单性质?

焦半径公式:(y2=2px(p>0))|MF|=2x0M(x0,y0)为抛物线上任意一点的坐标;抛物线定义:平面内到一定点 F 和一条定直线 l 的距离相等的点的轨迹称为抛物线, 抛物线四种标准方程的几何性质: 图形 参数 p 几何意义 开口方向 参数 p 表示焦点到准线的距离,p 越大,开口越阔。

抛物线定义和性质?

平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。

1.抛物线的简单几何性质  

抛物线的范围,对称性、顶点、离心率统称为其简单几何性质,对于抛物线的四种不同形式的标准方程,它们有相同的顶点和离心率,而其范围和对称性,则与标准方程的形式有关,注意结合图形来得出。  

2.由抛物线的定义可知,若直线1过抛物线 的焦点F且交抛物线于 两点,则焦半径 ,弦长,抛物线的焦点弦有很多重要性质,后面结合有关例题作详细研究。  3.圆锥曲线的统一定义  

由椭圆、双曲线的第二定义及抛物线的定义可知,平面上动点M到定点F及到定直线1的距离之比等于常数e的点M的轨迹是圆锥曲线(这里点F不在直线1上,e>0,其中F是圆锥曲线的一个焦点,1是与F对应的准线,而e即为其离心率。)  当0<e<1时,轨迹是椭圆;  当e=1时,轨迹是抛物线;  当e>1时,轨迹是双曲线。 

4.最值问题 设 是抛物线 上的动点,则点P到某定点或某定直线的距离的最大(小)值问题,可利用两点间的距离公式或点到直线的距离公式建立距离d关于 或 的函数,再求最值,而抛物线的范围则决定了函数的定义域。

1、通径是过焦点的弦中最短的弦

2、对y^2=2px来说,过焦点的弦与抛物线交于A(x1,y1)、B(x2,y2),则y1*y2=-p^2

3、对y^2=2px来说,过焦点F的弦与抛物线交于A(x1,y1)、B(x2,y2),(1/AF)+(1/BF)为定值

4、对y^2=2px来说,过焦点F的弦与抛物线交于A(x1,y1)、B(x2,y2),过A作AA1垂直于准线于A1,过B作BB1垂直于准线于B1,M为A1B1中点,则AM⊥MB

5、对y^2=2px来说,过焦点F的弦与抛物线交于A(x1,y1)、B(x2,y2),C在抛物线的准线上,且BC//x轴,则AC过原点

6、对y^2=2px来说,过焦点F的弦与抛物线交于A(x1,y1)、B(x2,y2),向量OA、OB的数量积为定值

7、光学性质:过焦点的光线被抛物线反射后为一组平行光线。

8、设C为抛物线上一点,过抛物线的焦点F作直线L交抛物线于A、B,AF、BF分别与准线交于P、Q,则PF⊥QF。(这个结论对椭圆、双曲线也成立。)

版权声明