主成分分析的基本步骤?
进行主成分分析主要步骤如下:
1. 指标数据标准化(SPSS软件自动执行);
2. 指标之间的相关性判定;
3. 确定主成分个数m;
4. 主成分Fi表达式;
5. 主成分Fi命名。
主成分分析法的基本原理
主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。
主成分分析和因子分析的区别?
主成分分析:将多个有一定相关性的指标进行线性组合,以最少的维度解释原数据中尽可能多的信息为目标进行降维,降维后的各变量间彼此线性无关。
因子分析是提取出反应原变量的一些共性因子,同时希望尽可能少的损失样本信息。
区别:
(1)因子分析需要构造因子模型,着重要求新变量具有实际的意义,能解释原始变量间的内在结构。
(2)主成分分析仅仅是变量变换,是原始变量的线性组合表示新的综合变量,强调新变量贡献了多大比例的方差,不关心新变量是否有明确的实际意义。
如何用主成分分析确定指标权重?
在SPSS中,主成分分析是通过设置因子分析中的抽取方法实现的,如果设置的抽取方法是主成分,那么计算的就是主成分得分,另外,因子分析和主成分分析尽管原理不同,但是两者综合得分的计算方法是一致的。 确定数据的权重也是进行数据分析的重要前提。可以利用SPSS的因子分析方法来确定权重。主要步骤是: (1)首先将数据标准化,这是考虑到不同数据间的量纲不一致,因而必须要无量纲化。 (2)对标准化后的数据进行因子分析(主成分方法),使用方差最大化旋转。 (3)写出主因子得分和每个主因子的方程贡献率。 Fj =β1j*X1 +β2j*X2 +β3j*X3 + ……+ βnj*Xn ; Fj 为主成分(j=1、2、……、m),X1、X2 、X3 、……、Xn 为各个指标,β1j、β2j、β3j、……、βnj为各指标在主成分Fj 中的系数得分,用ej表示Fj的方程贡献率。 (4)求出指标权重。 ωi=[(m∑j)βij*ej]/[(n∑i)(m∑j)βij*ej],ωi就是指标Xi的权重。 因子分析应用在评价指标权重确定中,通过主成分分析法得到的各指标的公因子方差,其值大小表示该项指标对总体变异的贡献,通过计算各个公因子方差占公因子方差总和的百分数。
主成分分析可用来干什么?
主成分分析最主要的用途在于“降维”。 举个例子,你要做一项分析,选中了20个指标,你觉得都很重要,但是20个指标对于你的分析确实太过繁琐,这时候,你就可以采用主成分分析的方法进行降维。 20个指标之间会有这样那样的相互关系,相互之间会有影响,通过主成分分析后,得到4个或者5个主成分指标。
此时,这几个主成分指标既涵盖了你20个指标中的绝大部分信息,又让你的分析得到了简化(从20维降到4、5维),简化了分析过程,增加了结果精度。
主成分与因子分析?
主成分分析:主成份是原始变量的线性组合,在考虑所有主成份的情况下主成份和原始变量间是可以逆转的。即“简化变量”,将变量以不同的系数合起来,得到好几个复合变量,然后在从中挑几个能表示整体的复合变量就是主成份,然后计算得分。
因子分析:公共因子和原始变量的关系是不可逆转的,但是可以通过回归得到。是将变量拆开,分成公共因子和特殊因子。过程是:因子载荷计算,因子旋转,因子得分。
spss进行主成分分析图文完整教程?
spss进行主成分分析图文完整教程
1、将数据录入excel或者spss
2、数据标准化:打开数据后选择分析→描述统计→描述,对数据进行标准化,选中将标准化得分另存为变量:
3、进行主成分分析:选择分析→降维→因子分析,
4、设置描述性,抽取,得分和选项:
5、查看主成分分析和分析:相关矩阵表明,各项指标之间具有强相关性。比如指标GDP总量与财政收入、固定资产投资总额、第二产业增加值、第三产业增加值、工业增加值的相关系数较大。这说明他们之间指标信息之间存在重叠,适合采用主成分分析法。(下表非完整呈现)
6、由 Total Variance Explained(主成分特征根和贡献率)可知,特征根λ1=9.092,特征根λ2=1.150前两个主成分的累计方差贡献率达93.107%,即涵盖了大部分信息。这表明前两个主成分能够代表最初的11个指标来分析河南各个城市经济综合实力的发展水平,故提取前两个指标即可。主成分,分别记作F1、F2。
7、指标X1、X2、X3、X4、X5、X6、X7、X8、X9、X10在第一主成分上有较高载荷,相关性强。第一主成分集中反映了总体的经济总量。X11在第二主成分上有较高载荷,相关性强。第二主成分反映了人均的经济量水平。但是要注意:这个主成分载荷矩阵并不是主成分的特征向量,也就是说并不是主成分1和主成分2的系数,主成分系数的求法是:各自主成分载荷向量除以各自主成分特征值的算术平方根。
8、成分得分系数矩阵(因子得分系数)列出了强两个特征根对应的特征向量,即各主要成分解析表达式中的标准化变量的系数向量。故各主要成分解析表达式分别为:F1=0.32ZX11+0.33ZX12+0.31ZX13+0.31ZX14+0.32ZX15+0.32ZX16+0.32ZX17+0.32ZX18+0.32ZX19+0.21ZX110+0.15ZX111F2=8.46ZX21+0.02ZX22-0.02ZX23-0.20ZX24-0.23Z25-0.04ZX26-0.15ZX27-0.02ZX28+0.10ZX29+0.47ZX210+0.78ZX211
9、主成分的得分是相应的因子得分乘以相应的方差的算术平方根。即:主成分1得分=因子1得分乘以9.092的算术平方根 主成分2得分=因子2得分乘以1.150的算术平方根例如郑州:主成分因子=FAC1_1*9.092的算术平方根=3.59386*9.092的算术平方根=10.83,将各指标的标准化数据带入个主成分解析表达式中,分别计算出2个主成分得分(F1、F2),再以个主成分的贡献率为全书对主成分得分进行加权平均,即:H=(82.672*F1+10.497*F2)/93.124,求得主成分综合得分。
扩展资料:
主成分分析是将多个指标化为少数几个不相关的综合指标,并对综合指标按照一定的规则进行分类的一种多元统计分析方法。这种分析方法能够降低指标维数,浓缩指标信息,将复杂的问题简化,从而使问题分析更加直观有效。目前,这种方法已经在经济等领域中得到广泛的应用,而选好数据就可以利用spss进行主成分分析。
spss主成分分析的优缺点?
主成分分析法的缺点:
1、在主成分分析中,我们首先应保证所提取的前几个主成分的累计贡献率达到一个较高的水平(即变量降维后的信息量须保持在一个较高水平上),其次对这些被提取的主成分必须都能够给出符合实际背景和意义的解释(否则主成分将空有信息量而无实际含义)。
2、主成分的解释其含义一般多少带有点模糊性,不像原始变量的含义那么清楚、确切,这是变量降维过程中不得不付出的代价。
因此,提取的主成分个数m通常应明显小于原始变量个数p(除非p本身较小),否则维数降低的“利”可能抵不过主成分含义不如原始变量清楚的“弊”。
主成分分析原理?
分析原理是:
主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。
常见的求解主成分?
一、主成分分析 1、简介 在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。 2、原理 设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的综合变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。 二、主成分分析的基本思想及步骤 1、基本思想 主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。 2、步骤 Fp=a1iZX1+a2iZX2+……+apiZXp 其中a1i, a2i, ……,api(i=1,……,m)为X的协方差阵Σ的特征值所对应的特征向量,ZX1, ZX2, ……, ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[注:本文指的数据标准化是指Z标准化]。 A=(aij)p×m=(a1,a2,…am,),Rai=λiai,R为相关系数矩阵,λi、ai是相应的特征值和单位特征向量,λ1≥λ2≥…≥λp≥0 。 进行主成分分析主要步骤如下: 1. 指标数据标准化(SPSS软件自动执行); 2. 指标之间的相关性判定; 3. 确定主成分个数m; 4. 主成分Fi表达式; 5. 主成分Fi命名;