数学的勾股定理是什么?
勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组成a2+b2=c2的正整数组(a,b,c)。(3,4,5)就是勾股数。 勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。当整数a,b,c满足a2+b2=c2这个条件时,(a,b,c)叫做勾股数组。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2。”常见勾股数有(3,4,5)(5,12,13)(6,8,10)。
延伸阅读
勾股定理的概念?
勾股定理: 在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(PythagorasTheorem)。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。(称勾股定理的逆定理)希望有用。
勾股定理秒懂百科?
勾股定理指的是:直角三角形两直角边的平方和等于斜边的平方。勾股定理是一个基本的几何定理,中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
勾股数和勾股定理指的是什么?
常用的勾股数有:3、4、5;5、12、13;7、24、25;8、15、17;9、40、41等等。
勾股数,又名毕氏三元数 。勾股数就是可以构成一个直角三角形三边的一组正整数。依据的是勾股定理。勾股定理是人类早期发现并证明的重要数学定理之一。
勾股定理说明,平面上的直角三角形的两条直角边的长度(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方。反之,若平面上三角形中两边长的平方和等于第三边边长的平方,则它是直角三角形(直角所对的边是第三边)。
据《周髀算经》中记述,公元前一千多年周公与商高论数的对话中,商高就以三四五3个特定数为例详细解释了勾股定理要素。
古埃及在公元前2600年的纸莎草就有(3,4,5)这一组勾股数,而古巴比伦泥板涉及的最大的一个勾股数组是(12709,13500,18541)。
扩展资料
勾股定理的证明
一、赵爽勾股圆方图证明法
中国三国时期赵爽为证明勾股定理作“勾股圆方图”即“弦图”,按其证明思路,其法可涵盖所有直角三角形,为东方特色勾股定理无字证明法。2002年第24届国际数学家大会(ICM)在北京召开。中国邮政发行一枚邮资明信片,邮资图就是这次大会的会标—中国古代证明勾股定理的赵爽弦图。
二、刘徽“割补术”证明法
中国魏晋时期伟大数学家刘徽作《九章算术注》时,依据其“割补术”为证勾股定理另辟蹊径而作“青朱出入图”。刘徽描述此图,“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不动也,合成弦方之幂。开方除之,即弦也。”
其大意为,一个任意直角三角形,以勾宽作红色正方形即朱方,以股长作青色正方形即青方。将朱方、青方两个正方形对齐底边排列,再进行割补—以盈补虚,分割线内不动,线外则“各从其类”,以合成弦的正方形即弦方,弦方开方即为弦长。
参考资料来源:
勾股定理是什么,什么意思?
勾股定理 [gōu gǔ dìng lǐ] 生词本基本释义[Pythagorean theorem] 《周髀算经》记载:西周初年商高提出的勾三股四弦五。这是勾股定理的一个特例。勾股定理就是直角三角形斜边上的正方形面积,等于两直角边上的正方形面积之和。中国古代称两直角边为勾和股,斜边为弦。勾三股四弦五就是:勾三的平方九,加股四的平方十六,等于弦五的平方二十五。说明我国很早就掌握勾股定理,西方的希腊到公元前六世纪的毕达哥拉斯时,才发现这一定理
勾股定理意思?
勾股定律(Pythagorean Theorem,别称:勾股弦定理、勾股定理)是一个基本的几何定理,最早提出并证明此定理是古希腊的毕达哥拉斯学派(公元前6世纪),在中国最早由商高提出(周朝时期)。
勾股定理指直角三角形的两条直角边长(古称勾长、股长)的平方和等于斜边长(古称弦长)的平方,它是数学定理中证明方法最多的定理之一,也是数形结合的纽带之一。