三角形的定义是什么?
三角形有内心、外心、重心、垂心、旁心、界心。
1、三角形三条内角平分线的交点叫三角形的内心。即内切圆的圆心。内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(通过全等易证明)。
2、外心是一个数学名词。是指三角形三条边的垂直平分线也称中垂线的相交点。
3、三角形重心是三角形三条中线的交点。当几何体为匀质物体时,重心与形心重合。
4、三角形的三条高线的交点叫做三角形的垂心。锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。
5、旁心是三角形的旁切圆(与三角形的一边和其他两边的延长线相切的圆)的圆心。
6、三角形的顶点与其对边的周界中点的连线叫做三角形的周界中线。或者三角形三条周界中线的交点叫做三角形的界心。如果三角形一边上的一点和这边所对的顶点把三角形的周界分割为两条等长的折线,那么就称这一点为三角形的周界中点。
延伸阅读
三角形的定义和特征?
答,三条线段首尾连结而成的图形叫三角形。特征是,任意两边之和大于第三边,任意两边之差小于笫三边。三内角为180度。按边分有。
1、不等边三角形。
2、等腰三角形。
3、正三角形。
按角分有:1,锐角三角形。
2,直角三角形。
3、钝角三角形。三角形有著名的五心定理。
三角形的定义以及字母表示?
三角形是由三条不在同一直线上的线段组成的图形。
在△ABC$中,$AB$、$BC$、$CA$段是三角形的边。
点$a$,$B$,$C$是三角形的顶点,
a,B和C的角是由两个相邻边形成的角,称为三角形的内角,简称三角形的角。
2三角形表示法
三角形可用符号“$△$”表示,顶点为$a$、$B$、$C$的三角形记为“$△ABC$”,读作“三角形$ABC$”。
$△ABC$的三个边,有时表示为$a$、$B$、$C$。通常,顶点$a$的边$BC$由$a$表示,顶点$B$的边$AC$由$B$表示,顶点$C$的边$AB$由$C$表示。
三。三角形分类
(1) 按边缘关系分类
$三角形cases不等边三角形\等腰三角形cases等腰三角形,底边和腰不等长cases结束cases$
(2) 按内角分类
$三角形cases直角三角形\斜三角形cases锐角三角形\钝角三角形cases结束cases$
4三角形的高度、中线和平分线
(1) 三角形的高度
定义:从三角形的顶点到它的对边画一条垂直线。顶点和垂直脚之间的线称为三角形的高度。
几何表达式:在$△ABC$中,$ad$是$△ABC$边上$BC$的高度,或$ad⊥BC$等于$d$或$∠ADB=$∠a DC=$$90°$
有关三角形的所有知识点?
关于三角形的所有知识点:
1、三角形的概念:在平面内,三条线段首尾相接而形成的封闭图形,就是三角形。
2、三角形内角和的度数:三角形的三个内角的度数和,等于180度。
3、三角形外角的度数:三角形的任意一个外角的度数,等于与它不相邻的两个内角度数的和。
4、三角形的分类:①、按边分:可以分为:α、任意三角形:即三边都不相等的三角形;b、等腰三角形:即有两条边相等的三角形;C、等边三角形(正三角形):即三条边都相等的三角形。②、按角分类:α、锐角三角形:即三个内角都是锐角的三角形;b、直角三角形:即三个内角中,有一个内角为直角的三角形,也叫Rt三角形;c、钝角三角形:即三个内角中,有一个内角是钝角的三角形。
5、直角三角形:①、直角三角形中,两个锐角的度数和等于90度(两个锐角互余);②、直角三角形中的勾股定理:斜边的平方等于两条直角边的平方和;③、直角三角形中,斜边上的中线等于斜边的一半;④、直角三角形中,两直角边之积等于斜边与斜边上的高之积。
6、全等三角形:①、判定定理:a、边边边(SSS);b、边角边(SAS);C、角边角(ASA);d、角角边(AAS)。②性质定理:如果两个三角形全等,那么它们的对应边相等,它们的对应角相等。③直角三角形全等:除具有一般两个三角形的性质定理和判定定理外,还有一个独特的判定定理就是:斜边直角边,也就是在两个直角三角形中,它们的斜边和其中一条直角边分别对应相等,那么这两个直角三角形就相互全等。
7、相似三角形:①、判定定理:a、三条边对应成比例;b、两个内角对应相等;C、两条边对应成比例,且它们的夹角相等。②、性质定理:α、如果两个三角形相似,那么它们的对应边分别成比例,对应角分别相等;b、两个对应边成比例的比值,叫做这两个相似三角形的相似比。两个相似三角形对应边上的高,对应边上的中线,对应角的平分线也分别成比例,它们的比就等于这两个相似三角形的相似比;C、两个相似三角形的面积等于这两个相似三角形相似比的平方。
8、等腰三角形:两腰相等,两底角相等,底边上的中线,底边上的高,顶角的平分线三线重合,简称为“三线合一”。
9、等边三角形:①、三边相等,三个内角相等,三个内角的度数分别都是60度;②、每条边上的高,中线和顶角的平分线互相重合,即“三线合一”,且三条边上的高,中线,顶角的平分线都相等,并等于正三角形边长的(根号3/2)倍。③、如果正三角形一边长为α,面积为S,那么S=(根号3/4)α^2。
10、三角形的中位线:①、中位线概念:即三角形三条边中点的连线,叫三角形的三条中位数。②、三角形的中位线平行于底边且等于底边的一半;③、三角形的三条中位线将原三角形分为四个相互全等的小三角形。
三角形的定义是什么?有什么作用?
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。