怎样求解一元二次方程 怎样求解一元二次方程的方法

怎样求解一元二次方程?

方法 一、公式法

1.先判断△=b2-4ac,若△<0原方程无实根;

2.若△=0,原方程有两个相同的解为:X=-b/(2a);

3.若△>0,原方程的解为:X=((-b)±√(△))/(2a)。

方法二、配方法

1.先把常数c移到方程右边得:aX2+bX=-c

2.将二次项系数化为1得:X2+(b/a)X=- c/a

3.方程两边分别加上(b/a)的一半的平方得:X2+(b/a)X +(b/(2a))2=- c/a +(b/(2a))2

4.方程化为:(b+(2a))2=- c/a +(b/(2a))2

5.①、若- c/a +(b/(2a))2<0,原方程无实根;②、若- c/a +(b/(2a))2 =0,原方程有两个相同的解为X=-b/(2a);③、若- c/a +(b/(2a))2>0,原方程的解为X=(-b)±√((b2-4ac))/(2a)。END

方法三、直接开平方法

1.形如(X-m)2=n (n≥0)一元二次方程可以直接开平方法求得解为X=m±√nEND

方法四、因式分解法

1.将一元二次方程aX2+bX+c=0化为如(mX-n)(dX-e)=0的形式可以直接求得解为X=n/m,或X=e/d。

延伸阅读

一元二次方程基本解法?

一元一次方程的基本解法:

1、必须明确什么是等式?能够用“=”连接起来的式子,叫等式。如:6=3X2;3x+1=5;xy=2/3;x^2=3x+7;……

2、在明确了等式的概念后,再来看什么是方程?什么是一元一次方程?含有未知数的等式叫方程。比如:x+2=3x-5;x^2-3x+1=0;x^(1/2)=1;……只含有一个未知数,且未知数的最高指数为“1”的方程,叫一元一次方程。比如:x-(1/3)x=1;2x-1=6x+1;……

3、一元一次方程的解法:①、先移项,一般地,将含有未知数的项移到方程的左边,将常数项移到方程的右边;②、合并同类项,将方程两边同时合并同类项,即可整理成aⅹ=b(α≠0)的形式。③、未知数的系数是分数时,可以先取分母。即给方程两边同乘以分母;④、将未知数的系数化为“1”。即给方程两边同时除以未知数的系数即可。也就是将αx=b,化为x=b/α的形式,也就求出了一元一次方程的解。

一元二次方程组的解法步骤?

求解方法

1.开平方法

(1)形如

的一元二次方程可采用直接开平方法解一元二次方程。

(2)如果方程化成

的形式,那么可得

(3)如果方程能化成

的形式,那么

进而得出方程的根。

(4)注意:

等号左边是一个数的平方的形式而等号右边是一个常数,降次的实质是由一个一元二次方程转化为两个一元一次方程,方法是根据平方根的意义开平方。

2.配方法

将一元二次方程配成

的形式,再利用直接开平方法求解的方法。

(1)用配方法解一元二次方程的步骤

把原方程化为一般形式;方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;方程两边同时加上一次项系数一半的平方;把左边配成一个完全平方式,右边化为一个常数;进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。

(2)配方法的理论依据:完全平方公式

(3)配方法的关键:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。

3.求根公式

(1)用求根公式法解一元二次方程的一般步骤

把方程化成一般形式 ,确定德尔塔 的值(注意符号);

求出判别式 德尔塔的值,判断根的情况;

在 (注:此处△读“德尔塔”)的前提下,把 的值代入公式; 进行计算,求出方程的根。

(2)推导过程

一元二次方程求根公式的推导如下图:

注意:一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式:

,应该理解为“如果存在的话,两个自乘后为b2-4ac的数当中任何一个”。在某些数域中,有些数值没有平方根。

4.因式分解

因式分解法即利用因式分解求出方程的解的方法。

因式分解法解一元二次方程的一般步骤如下:

移项,使方程的右边化为零;将方程的左边转化为两个一元一次多项式的乘积;令每个因式分别为零;两个因式分别为零的解就都是原方程的解。

5.图像解法

(1)一元二次方程

的根的几何意义是二次函数

的图像(为一条抛物线)与 x轴交点的坐标。

图像法解方程

当 时,则该函数与 轴相交(有两个交点);

当 时,则该函数与 轴相切(有且仅有一个交点);

当 时,则该函数与轴 相离(没有交点)。

(2)另外一种解法是把一元二次方程

化为:

的形式。则方程的根,就是函数

交点的

坐标。通过作图,可以得到一元二次方程根的近似值。

6.计算机法

在使用计算机解一元二次方程时,和人手工计算类似,大部分情况下也是根据求根公式来求解,即:

可以进行符号运算的程序,如软件Mathematica,可以给出根的解析表达式,而大部分程序则只会给出数值解(但亦有部分显示平方根及虚数的情况)

1元2次方程式解法?

一元二次方程的解法有换元法,公式法,配方法,因式分解法,直接开平方法。

根据解一元二次方程的方法进行解答即可。一元二次方程的解法有换元法,公式法,配方法,因式分解法,直接开平方法。解决本题的关键突破口是掌握解一元二次方程的方法.本题考查了学生知识点综合运用的能力。

1..配方法(可解部分一元二次方程)

2.公式法(可解部分一元二次方程)

3.因式分解法(可解部分一元二次方程)

4.开方法(可解全部一元二次方程)一元二次方程的解法实在不行(你买个卡西欧的fx-500或991的计算器 有解方程的,不过要一般形式)

一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础。

一元二次方程的一般形式为:ax^2(2为次数,即X的平方)+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2 的整式方程。

如何求一元二次方程?

1.配完全平方公式或者平方差公式,比如:(x+3)平方=9或者(x+1)(x-1)=4的这种

2.或者是交叉方程式,比如这种:(x-3)(x+2)=8的这种

3.用这个万能的公式,就是有点费时间和精力

原来的方程式是a乘x的平方加b乘x加c

b的平方减去四倍的ac除以二倍的a即可求出

一元二次方程怎么解最简单的方法?

1、因式分解法:①因式分解法原理是利用平方和公式(a±b)2=a2±2ab+b2或平方差公式(a+b)(a-b)=a2-b2,把公式倒过来用就是了。②例如x2+4=0这个可以利用平方差公式,把4看成22,就是x2+22 => (x-2)(x+2)再分别解出就可以了。③0乘以任何数都得0,(x-2)要是0那么x=2,(x+2)等于0那么x=-2,这样就可以了。

2、配方法:①配方法不算很难但非常重要,配方法可以求二次函数顶点和坐标,也可以解一元二次方程。第一步,先化为ax2+bx=c的形式。②第二步,取一次项系数b一半的平方,再方程。b=8,先取一半,就是4,然后平方就是16,两边同时加上,就是x2+8x+16=2+16。③变一下形,平方和公式逆用,16看成42,就是(x+4)2=18。④然后直接开平方,x+4=±√18,再移项化简,x=±3√2-4。⑤然后再把解分别写出来就完成了

3、公式法:公式法比较简单,2×2-x=6先化为一般形式ax2+bx+c=0的形式,然后找出a,b,c,再直接套用公式(-b±√b2-4ac)÷2a,Δ=b2-4ac>0有两个不相等的实数根,Δ=b2-4ac=0有两个相等的实数根,解得x1=2 x2=-2/3

版权声明