怎样解二元二次方程 怎样解二元一次方程

怎样解二元二次方程?

步骤/方式1

一般用代入法求解。

二元二次方程解法公式:ax2+bxy+cy2+dx+ey+f=0。即将方程组中的二元一次方程,用含有一个未知数的代数式表示另一个未知数,然后代入二元二次方程中,从而化“二元”为“一元”,如此便得到一个一元二次方程。

步骤/方式2

其一般式为ax2+bxy+cy2+dx+ey+f=0。a、b、c、d、e、f都是常数,且a、b、c中至少有一个不是零,当b=0时,a与d以及c与e分别不全为零,当a=0时,c、e至少一项不等于零,当c=0时,a、d至少一项不为零。

步骤/方式3

其一般式为ax2+bxy+cy2+dx+ey+f=0。a、b、c、d、e、f都是常数,且a、b、c中至少有一个不是零,当b=0时,a与d以及c与e分别不全为零,当a=0时,c、e至少一项不等于零,当c=0时,a、d至少一项不为零。

延伸阅读

2元2次方程怎么解?

二元二次方程组是由两个未知数的一个二次方程和一个次数不超过二次的方程所组成的方程组。二元二次方程组的解法有代入法,因式分解法,配方法,韦达定理法,消除常数等方法。

怎么解二元二次方程?

步骤/方式1

一般用代入法求解。

二元二次方程解法公式:ax2+bxy+cy2+dx+ey+f=0。即将方程组中的二元一次方程,用含有一个未知数的代数式表示另一个未知数,然后代入二元二次方程中,从而化“二元”为“一元”,如此便得到一个一元二次方程。

步骤/方式2

其一般式为ax2+bxy+cy2+dx+ey+f=0。a、b、c、d、e、f都是常数,且a、b、c中至少有一个不是零,当b=0时,a与d以及c与e分别不全为零,当a=0时,c、e至少一项不等于零,当c=0时,a、d至少一项不为零。

步骤/方式3

二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。

方程,是指含有未知数的等式。是表示两个数学式之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。

二元二次方程的解法公式?

二元二次方程解法公式:ax2+bxy+cy2+dx+ey+f=0。且a、b、c中至少有一个不是零;当b=0时,a与d以及c与e分别不全为零;当a=0时,c、e至少一项不等于零,当c=0时,a、d至少一项不为零。

方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。

解二元二次方程的具体步骤?

二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。   (1)有两组相等的实数解。   (2)有两组不相等的实数解;   (3)没有实数解。解:将②代入①,整理得二次方程③的判别式 二元一次方程组(3张)  (4)当a<2时,方程③有两个不相等的实数根,则原方程有不同的两组实数解。   (5)当a=2时,方程③有两个相等的实数根,则原方程有相同的两组实数解。   (6)当a>2时,方程③没有实数根,因而原方程没有实数解。解:2x^2+y^2+3xy+6x+2y+12=0…①,   且x^2+4y^2+4xy+x+y+15=0…②.   提示: 解方程的基本思想是消元与降次。仅仅就其消元而言,任给的①,②都难以直接用一个变量表示另一个变量(即用关于x的代数式表示y,或y的代数式用表示x),其症结在于二元二次项3xy,4xy,因此,首先需消去二元二次项。②*3-①*4,得到一个新的方程。再运用配方法分别将其x,y配方为如下形式:a(x+i)^2+b(y+j)^2+c=0,就可实现了用一个变量表示另一个变量,但其涉及到开方,且变为无理方程作解,比较复杂。就其降次而言,可运用因式分解法(包括十字相乘法的推广:叉乘法及叉阵),难度较大。也可以运用函数的解析法。在此,谨作点拨。总的而言,一般有三种普遍的方法:代数方程解法,因式分解法,运用函数。

二元二次方程九种解法?

定义:仅含有两个未知数,并且含有未知数的项的最高次数是2次的整式方程,叫做二元二次方程。它的九种解法是(1)带入法(2)因式分解法(3)配方法(4韦达定理)(5)消除常数项(6)两式相除法(7)加减法(8)换元法(9)用根的判别式法。注意点:

(1)二元二次方程是整式方程。(2)二元二次方程含有两个未知数。

(3)含有未知数的项的最高次数是2

二元二次方程解法?

二元二次方程组求解的基本思想是“转化”,即通过“降次”、“消元”,将方程组转化为一元二次方程或二元一次方程组。由于这类方程组形式庞杂,解题方法灵活多样,具有较强的技巧性,因而在解这类方程组时,要认真分析题中各个方程的结构特征,选择较恰当的方法。

例1. a为何值时,方程组

(1)有两组相等的实数解。

(2)有两组不相等的实数解;

(3)没有实数解。 解:将②代入①,整理得。 二次方程③的判别式 (1)当,即a2时,方程③没有实数根,因而原方程没有实数解。 评析 由一个二元一次方程和一个二元二次方程组成的方程组,一般用代入法求解,即将方程组中的二元一次方程用含有一个未知数的代数式表示另一个未知数,然后代入二元二次方程中,从而化“二元”为“一元”,如此便得到一个一元二次方程。此时,方程组解的情况由此一元二次方程根的情况确定。

比如,当时,由于一元二次方程有两个相等的实根,则此方程组有相同的两组实数解……诸如此类。

版权声明