等差数列的公式中文 等差数列的公式小学

等差数列的公式?

一、 等差数列

  如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

  等差数列的通项公式为:an=a1n+(n-1)d (1)

  前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)

  以上n均属于正整数。

  从(1)式可以看出,an是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

  在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且为数列的平均数。

  且任意两项am,an的关系为:an=am+(n-m)d

  它可以看作等差数列广义的通项公式。

  从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

  若m,n,p,q∈N*,且m+n=p+q,则有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

  和=(首项+末项)×项数÷2

  项数=(末项-首项)÷公差+1

  首项=2和÷项数-末项

  末项=2和÷项数-首项

  末项=首项+(项数-1)×公差

  等差数列的应用:

  日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别

  时,当其中的最大尺寸与最小尺寸相差不大时,常按等差数列进行分级。

  若为等差数列,且有an=m,am=n.则a(m+n)=0。

  3.等差数列的基本性质

  ⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.

  ⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.

  ⑶若、为等差数列,则{ a ±b }与{ka +b}(k、b为非零常数)也是等差数列.

  ⑷对任何m、n ,在等差数列中有:a = a + (n-m)d,特别地,当m = 1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.

  ⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当为等差数列时,有:a + a + a + … = a + a + a + … .

  ⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).

  ⑺如果是等差数列,公差为d,那么,a ,a ,…,a 、a 也是等差数列,其公差为-d;在等差数列中,a -a = a -a = md .(其中m、k、 )

  ⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.

  ⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.

  ⑽设a 1,a 2,a 3为等差数列中的三项,且a1 与a2 ,a 2与a 3的项距差之比 = d( d≠-1),则2a2 = a1+a3.

延伸阅读

等差等比数列公式所有的公式?

1、等比数列通项公式、求和公式:

2、等差数列通项公式、求和公式:等比数列性质:

(1)若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq。

(2)在等比数列中,依次每k项之和仍成等比数列。

(3)若“G是a、b的等比中项”则“G^2=ab(G≠0)”。

(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。等差数列性质:

(1)在等差数列中,S = a,S = b (n>m),则S = (a-b)。

(2)在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍。

等差数列和等比数列的公式是什么?

1、等差数列求和公式:Sn=na1+n(n-1)d/2;等比数列求和公式:Sn=a1(1-q^n)/(1-q)(q≠1)。

2、等差数列是常见数列的一种,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。

3、等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。

全部关于等差数列的公式?

1.通项公式:研究的是末项与首项之间的关系:

推论一:对同一个等差数列而言,任意两项的差等于下角标之差与公差的乘积,即

推论二:对同一个等差数列而言,若

2. 求和公式:对等差数列的前n项进行求和:

;若n为奇数,则

等差数列:

在一列数中,任意相邻两个数的差是一定的,这样的一列数,就叫做等差数列。

基本概念:

首项:等差数列的第一个数,一般用a1表示;

项数:等差数列的所有数的个数,一般用n表示;

公差:数列中任意相邻两个数的差,一般用d表示;

通项:表示数列中每一个数的公式,一般用an表示;

数列的和:这一数列全部数字的和,一般用Sn表示.

基本思路:

等差数列中涉及五个量:a1 ,an, d, n,sn,,通项公式中涉及四个量,如果己知其中三个,就可求出第四个;求和公式中涉及四个量,如果己知其中三个,就可以求这第四个。

基本公式:

通项公式:an = a1+(n-1)d;

通项=首项+(项数一1)×公差;

数列和公式:sn,= (a1+ an)×n÷2;

数列和=(首项+末项)×项数÷2;

项数公式:n= (an+ a1)÷d+1;

项数=(末项-首项)÷公差+1;

公差公式:d =(an-a1))÷(n-1);

公差=(末项-首项)÷(项数-1);

关键问题:

确定已知量和未知量,确定使用的公式

等差数列基本的5个公式?

等差数列公式an=a1+(n-1)d

前n项和公式为:Sn=na1+n(n-1)d/2

若公差d=1时:Sn=(a1+an)n/2

若m+n=p+q则:存在am+an=ap+aq

若m+n=2p则:am+an=2ap

以上n均为正整数

第n项的值an=首项+(项数-1)×公差

前n项的和Sn=首项+末项×项数(项数-1)公差/2

公差d=(an-a1)÷(n-1)

项数=(末项-首项)÷公差+1

数列为奇数项时,前n项的和=中间项×项数

数列为偶数项,求首尾项相加,用它的和除以2

等差中项公式2an+1=an+an+2其中{an}是等差数列

等差数列相关公式

第n项=首项+(项数-1)*公差

项数=(末项-首项)/公差+1

公差=(末项-首项)/(项数-1)

通项公式推导:

a2-a1=d;a3-a2=d;a4-a3=d……an-a(n-1)=d,将上述式子左右分别相加,得出an-a1=(n-1)*d→an=a1+(n-1)*d。

前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2

Sn=[n*(a1+an)]/2

Sn=d/2*n2+(a1-d/2)*n

注:以上n均属于正整数。

版权声明