代数几何是什么?
代数几何,是现代数学的一个重要分支学科。它的基本研究对象是在任意维数的(仿射或射影)空间中,由若干个代数方程的公共零点所构成的集合的几何特性。这样的集合通常叫做代数簇,而这些方程叫做这个代数簇的定义方程组。
代数簇是由空间坐标的一个或多个代数方程所确定的点的轨迹。例如,三维空间中的代数簇就是代数曲线与代数曲面。代数几何研究一般代数曲线与代数曲面的几何性质。
延伸阅读
代数几何共有哪些猜想?
哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。因现今数学界已经不使用“1也是素数”这个约定,哥德巴赫猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。
霍奇猜想是代数几何的一个重大的悬而未决的问题。由威廉·瓦伦斯·道格拉斯·霍奇提出,它是关于非奇异复代数簇的代数拓扑和它由定义子簇的多项式方程所表述的几何的关联的猜想。
代数和几何的由来?
代数几何的研究是从19世纪上半叶关于三次或更高次的平面曲线的研究开始的。例如,阿贝尔在关于椭圆积分的研究中,发现了椭圆函数的双周期性,从而奠定了椭圆曲线理论基础。
黎曼1857年引入并发展了代数函数论,从而使代数曲线的研究获得了一个关键性的突破。黎曼把他的函数定义在复数平面的某种多层复迭平面上,从而引入了所谓黎曼曲面的概念。运用这个概念,黎曼定义了代数曲线的一个最重要的数值不变量:亏格。这也是代数几何历史上出现的第一个绝对不变量。并首次考虑了亏格g 相同的所有黎曼曲面的双有理等价类的参量簇问题,并且发现这个参量簇的维数应该是3g-3,虽然黎曼没有能严格证明它的存在性。
在黎曼之后,德国数学家诺特等人用几何方法获得了代数曲线的许多深刻的性质。诺特还对代数曲面的性质进行了研究。他的成果给以后意大利学派的工作建立了基础。
代数与几何有什么区别?
代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论和方法的数学分支学科。
初等代数是更古老的算术的推广和发展。
(简单来说就是要设未知数x、y、z等)
几何,就是研究空间结构及性质的一门学科。(简单来说就是研究平面图形或者立体图形)就是数字与模拟的区别代数就是代数几何就是几何,区别在自然,人法地,地法天,天法道,道法自然。
代数是一些逻辑运算。
几何是图形运算数和形的区别,运算和利用图形性质的区别
代数几何有多难?
代数几何跟其它数学分支相比,难就难在它所需要的基础知识非常多,因此入门难。
先不看你以后要做代数几何的哪个方向,最基础的你需要懂抽象代数、交换代数、同调代数。而微分几何入门就简单了,只需要线性代数和一些点集拓扑的基础就可以学流形的理论了。
接着代数几何入门以后难又难在代数几何的涉及范围非常宽泛,你能够做的方向非常多,你因此会有选择困难症,其实与其说选择困难不如说是迷茫,你不知道要做哪个方向,要做哪些问题。
代数几何,计算几何在应用数学下有什么应用?
代数几何是纯数学的工具。计算几何更像是一类几何问题的总集,可以用到初等几何,流形,comformal geometry, 图论,拓扑等等。目前我所在的计算几何组,学生主要来自于两方面,一类数学系,一类计算机系。代数几何在我的面试经验中,有一个3D打印的公司有要求。而计算几何由于它本身是与计算机相关的几何问题的总集,应用前景就更加广了。比如运动轨迹的聚类(clustering),sensor deployment(guarding),TSP(routing),一时半会儿都说不完。
代数几何,解析几何是一回事吗?
用代数的方法研究几何的思想,在继出现解析几何之后,又发展为几何学的另一个分支,这就是代数几何.代数几何学研究的对象是平面的代数曲线、空间的代数曲线和代数曲面. 代数几何学的兴起,主要是源于求解一般的多项式方程组,开展了由这种方程组的解答所构成的空间,也就是所谓代数簇的研究.解析几何学的出发点是引进了坐标系来表示点的位置,同样,对于任何一种代数簇也可以引进坐标,因此,坐标法就成为研究代数几何学的一个有力的工具.解析几何包括平面解析几何和立体解析几何两部分.平面解析几何通过平面直角坐标系,建立点与实数对之间的一一对应关系,以及曲线与方程之间的一一对应关系,运用代数方法研究几何问题,或用几何方法研究代数问题.17世纪以来,由于航海、天文、力学、军事、生产的发展,以及初等几何和初等代数的迅速发展,促进了解析几何的建立,并被广泛应用于数学的各个分支.在解析几何创立以前,几何与代数是彼此独立的两个分支.解析几何的建立第一次真正实现了几何方法与代数方法的结合,使形与数统一起来,这是数学发展史上的一次重大突破.笛卡尔作为变量数学发展的第一个决定性步骤,解析几何的建立对于微积分的诞生有着不可估量的作用.
初中的代数和几何是在一起的吗?
初中学习的数学都是几何和代数分开学习的,一般而言初中先学习的是代数,代数的学习一般是在初一一学年和初二上半学年学习的。几何是在初二下半学年开始,一直到初三的上班学年才结束。最后一个学期一般是将几何和代数进行结合,就是我们熟知的数形结合。代数也就是我们常见的函数,包括一元函数,二元函数和反比例函数,这也是最基本的代数。几何学习的也是最基本的形状图形特征,一般是矩形,圆形等图形。而数形结合就是将图形和函数进行结合,同函数表达图形,从而更好的用代数的方法解决几何上的问题。
代数几何讲什么的,谁来介绍一下历史发展?
Dieudonne把代数几何学的历史分为七个时期:
前史(prehistory,Ca.400BC-1630A.D),
探索阶段(Exploration,1630-1795),
射影几何的黄金时代(1795-1850),
Riemann(黎曼)和双有理几何的时代(1850- 1866),
发展和混乱时期(1866-1920),
涌现新结构和新思想的时期(1920-1950),
最后的一个阶段,也就是代数几何史上最辉煌的时期,层(sheaf)和概型(Scheme)的时代(1950-)。
代数几何学的对象原来是欧氏平面中的代数曲线,即由多项式P(x,y)=0定义的轨迹,比如最简单的平面代数曲线——直线和圆,古希腊时代就已经在研究圆锥曲线和一些简单的三次,四次代数曲线了。承前述可以看出,研究代数方程组的公共零点集离不开坐标表示,所以,真正意义上的研究还得从Descartes(笛卡尔)和Fermat(费马)创立几何图形的坐标表示开始说起,但这已经是17世纪的事情了。解析几何学对于代数曲线和曲面已经有相当完整的结果了,从Newton(牛顿)开始已着手对三次代数曲线进行分类,共得出72类。
从这时起,分类问题便成为代数几何中的重要问题了,这些问题成为大量研究工作的推动力。但是,反过来,正是由于对三次的或四次的代数曲线进行的分类过于繁复,从而推动了解析几何学向代数几何学的过度,也就是在更加粗糙的水平上进行分类和进行一般的理论研究。
18世纪,AG(代表代数几何,以下类同)的基本问题是代数曲线或代数曲面的相交问题,相当于代数方程组中的消元问题,这个时期得到的基本成果是Bezout定理(贝竹定理):
设X,Y是P^2中两支不同的曲线,次数分别为d和e,令X#Y={P_1, P_2,……P_s}是它们的交点, 在每个点处的相交数分别记为 I(X,Y;P_j), 则
∑I(X,Y;P_j)=de。
随着19世纪射影几何学的兴起,开始用射影几何方法来研究代数曲线,其中引进了无穷远点及虚点和用齐次多项式及射影坐标P (X_0,X_1,X_2)=0来表示代数曲线,并且允许出现复坐标,1834年,德国数学家普吕克尔得出关于平面曲线的普吕克尔公式,这个公式把平面代数曲线的代数特征和几何特征联系起来了,如次数和拐点数等,特别是由此证明了一般三次代数曲线(即椭圆曲线)皆有9个拐点,1839年,他还发现四次曲线有28条二重切线,其中至多8条是实的。
上面就是前三个阶段代数几何学的一个概貌。