圆的方程式化为标准式(高中数学圆的一般方程)

怎么把圆的一般方程式变成标准方程式?

用配方法。将圆的一般式化成标准方程。首先将x和y分别分组,将式中的常数项移到等号的另一边;然后将变量加上一次项系数一半的平方,同时等号另一边也加上相同的常数值;各组变量分别整理成完全平方式,将等号另一边的常数也合并成一个数;将等号右边的常数写成一个数的平方的形式。

1圆的标准方程

1、圆的标准方程与一般式方程的特点

圆的标准方程可清晰得看出圆心坐标及半径;圆的一般式可以方便地求在圆上某一点的切线方程。在求圆的方程时可用,大部分都用标准式方程解题,很少用到一般式方程。

2、圆的标准方程中(x-a)2+(y-b)2=r2中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

3、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等;在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等;在同圆或等圆中,如果两条弦相等,那么他们所对的圆心角相等,所对的弧相等,所对的弦心距也相等。

高中数学圆的方程?

圆的方程知识点

1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程

(1)标准方程 ,圆心o ,半径为r;

(2)一般方程

当 时,方程表示圆,此时圆心为 ,半径为

当 时,表示一个点; 当 时,方程不表示任何图形。

(3)求圆方程的方法:

一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

  3、直线与圆的位置关系:

直线与圆的位置关系有相离,相切,相交三种情况:

(1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ;

(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】

(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2

4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆 ,

两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当 时两圆外离,此时有公切线四条;

当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;

当 时,两圆内切,连心线经过切点,只有一条公切线;

当 时,两圆内含; 当 时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

圆的辅助线一般为连圆心与切线或者连圆心与弦中点

圆心为(0,2),半径为3的圆的方程式

  • 求圆心为(0,2),半径为3的圆的方程式
  • (x-2)^2+y^2=9

求教几条数学的圆柱体计算,内含方程式

  • 已知圆柱体的体积V cm3 可以这样计算出来:V= π*r2*h那麼如果圆柱体的总表面积是942cm2,表面的圆的半径是10cm,找出它的:圆柱体的高圆柱体的体积(如果有需要,答案可以只写到小数後的第二个位)
  • 表面积=2*底面积+侧面积 =2*3.14*r^2+2*r*3.14*h已知总表面积=942cm2, r=10cm代入上式: 942=2*3.14*10^2+2*10*3.14hh=(942-2*3.14*10^2)2*10*3.14 =31462.8 =5cm 体积=底面积*高 =3.14*10^2*5 =1570cm3

圆心为(0,2),半径为3的圆的方程式

  • 求圆心为(0,2),半径为3的圆的方程式
  • (x-2)^2+y^2=9
版权声明