错位相减法万能公式(错位相减求和例题10道带答案)

错位相减万能公式?

数列错位相减法万能公式为Cn=(An+B)*qn-B,根据数列特征,由万能公式设出前n项和,分别算出数列前1、2项和;最后根据万能公式列出方程组,求出系数。

数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数;数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

错位相减法例题10道及答案?

例题:

已知数列{an}中,a1=3,点(an,an+1)在直线y=x+2上。

(1)求数列{an}的通项公式;

(2)若bn=an`3n,求数列{bn}的前n项和Tn。

解:

(1)∵点(an,an+1)在直线y=x+2上

∴an+1=an+2,即an+1-an=2

∴数列{an}是以3为首项,以2为公差的等差数列

∴an=3+2(n-1)=2n+1

(2)∵bn=an·3n

∴bn=(2n+1)·3n

∴Tn=3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)·3n①

3Tn=3×32+5×33+…+(2n-1)·3n+(2n+1)·3n+1②

由①-②得

-2Tn=3×3+2(32+33+…+3n)-(2n+1)·3n+1

=9+2×9(1-3n-1)/(1-3)-(2n+1)·3n+1

=-2n·3n+1

∴Tn=n·3n+1

形如An=BnCn,其中{Bn}为等差数列,通项公式为bn=b1+(n-1)*d;{Cn}为等比数列,通项公式为cn=c1*q^(n-1);对数列An进行求和,首先列出Sn,记为式(1);再把所有式子同时乘以等比数列的公比q,即q·Sn,记为式(2);然后错开一位,将式(1)与式(2)作差,对从而简化对数列An的求和。这种数列求和方法叫做错位相减法

错位相减法怎么用

  • 错位相减法:(适用于是由一个等差数列和一个等比数列组成的数列求和)eg:1×2+2×4+3×8+……+nx2的n次方 …… 1式1×4+2×8+3×16……+(n-1)x2碃害百轿知计版袭保陋的n次方+ nx2的n+1次方 …2式1和2相减,得答案.

错位相减法怎么用啊求学霸QQ

  • 我这有道题,就按这种做法做就可以了

1.2题,用错位相减法

  • 数学是语文老师教的
版权声明