光合作用光反应和暗反应(光合作用的三个阶段分别是什么)

光合作用的三个阶段?

光合作用的三个阶段

1、在类囊体薄膜上,水光解成为还原氢和氧气,ADP与Pi吸收能量结合生成ATP;

2、在叶绿体基质中,C5结合CO2生成两分子C3;

3、在叶绿体基质中,ATP水解为ADP与Pi释放能量,C3吸收能量并结合第一过程中水生成的还原氢,生成糖类和C5。

拓展资料

光合作用通常是指绿色植物(包括藻类)吸收光能,把二氧化碳(CO2)和水(H2O)合成富能有机物,同时释放氧的过程。

2018年6月,美国《科学》杂志刊登的一项新研究说,蓝藻可利用近红外光进行光合作用,其机制与之前了解的光合作用不同。这一发现有望为寻找外星生命和改良作物带来新思路。新研究发现,上述蓝藻在有可见光的情况下,会正常利用“叶绿素-a”进行光合作用,但如果处在阴暗环境中,缺少可见光时,就会转为利用“叶绿素-f”,使用近红外光进行光合作用。

光合作用暗反应为光反应提供什么

光合作用暗反应阶段是光合作用第二个阶段中的化学反应。

1、场所:叶绿体基质;

2、CO2+C5生成两个C3(二氧化碳的固定);

3、C3+能量(ATP)被【H】还原生成,糖类物质(被储存)、形成C5;

4、光合作用中生产有机物的部分也是消耗CO2的部分;

5、暗反应实则为光反应提供Pi和ADP。

光合作用光反应产生的物质有

主要物质有水、有机物、氧气或者氢气。

光合作用:光能合成作用,是植物、藻类和某些细菌在可见光的照射下,经过光反应和暗反应,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。

光合作用暗反应的co2的固定要不要耗能?c3的还原要不要耗能?光反应的色素吸收光能要不要耗能?

  • 光合作用暗反应的co2的固定要不要耗能?c3的还原要不要耗能?光反应的色素吸收光能要不要耗能?
  • 光合作用可分为光反应和暗反应两个步骤光反应场所:叶绿体膜影响因素:光强度,水分供给植物光合作用的两个吸收峰叶绿素a,b的吸收峰过程:叶绿体膜上的两套光合作用系统:光合作用系统一和光合作用系统二,(光合作用系统一比光合作用系统二要原始,但电子传递先在光合系统二开始)在光照的情况下,分别吸收680nm和700nm波长的光子,作为能量,将从水分子光解光程中得到电子不断传递,最后传递给辅酶 NADP。而水光解所得的氢离子则因为顺浓度差通过类囊体膜上的蛋白质复合体从类囊体内向外移动到基质,势能降低,其间的势能用于合成ATP,以供暗反应所用。而此时势能已降低的氢离子则被氢载体NADP带走。一分子NADP可携带两个氢离子。这个NADPH+H离子则在暗反应里面充当还原剂的作用。意义:1:光解水,产生氧气。2:将光能转变成化学能,产生ATP,为暗反应提供能量。3:利用水光解的产物氢离子,合成NADPH+H离子,为暗反应提供还原剂。暗反应实质是一系列的酶促反应场所:叶绿体基质影响因素:温度,二氧化碳浓度过程:不同的植物,暗反应的过程不一样,而且叶片的解剖结构也不相同。这是植物对环境的适应的结果。暗反应可分为C3,C4和CAM三种类型。三种类型是因二氧化碳的固定这一过程的不同而划分的。卡尔文循环卡尔文循环(Calvin Cycle)是光合作用的暗反应的一部分。反应场所为叶绿体内的基质。循环可分为三个阶段: 羧化、还原和二磷酸核酮糖的再生。大部分植物会将吸收到的一分子二氧化碳通过一种叫二磷酸核酮糖羧化酶的作用整合到一个五碳糖分子1,5-二磷酸核酮糖(RuBP)的第二位碳原子上。此过程称为二氧化碳的固定。这一步反应的意义是,把原本并不活泼的二氧化碳分子活化,使之随后能被还原。但这种虎尝港妒蕃德歌泉攻沪六碳化合物极不稳定,会立刻分解为两分子的三碳化合物3-磷酸甘油酸。后者被在光反应中生成的NADPH+H还原,此过程需要消耗ATP。产物是3-磷酸丙糖。后来经过一系列复杂的生化反应,一个碳原子将会被用于合成葡萄糖而离开循环。剩下的五个碳原子经一些列变化,最后在生成一个1,5-二磷酸核酮糖,循环重新开始。循环运行六次,生成一分子的葡萄糖。

光合作用的光反应的ATP来自哪里

  • 光反应阶段,在太阳光能提供能量的前提下,ADP和Pi合成ATP。 在暗反应阶段,C3还原甫钉颠固郯改奠爽订鲸成葡萄糖是需要这些ATP分解成ADP提供能量。
版权声明