三角形的三边关系是什么?
1、三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边。2、设三角形三边为a,b,c则a+b>c,a>c-b,b+c>a,b>a-c,a+c>b,c>b-a3、例:任意△ABC,求证AB+AC>BC。证明:在BA的延长线上取AD=AC则∠D=∠ACD(等边对等角)∵∠BCD>∠ACD∴∠BCD>∠D∴BD>BC(大角对大边)∵BD=AB+AD=AB+AC∴AB+AC>BC扩展资料:特殊直角三角形性质1:直角三角形两直角边的平方和等于斜边的平方。 性质2:在直角三角形中,两个锐角互余。 性质3:在直角三角形中,斜边上的中线等于斜边的一半。性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
三角形三边为abc化简是怎么化的?
由三角形三边关系(两边之和大于第三边),原式=a+b+c+b+c-a+a+c-b+a+b-c=2(a+b+c)
[解析][分析]根据三角形任意两边之和大于第三边,及二次根式的性质,一个数的平方的算术平方根等于它的绝对值进行化简,然后按整式加减法法则计算即可。
三角形任意两边之和什么第三边
三角形的任意两边之和大于第三边,任意两边之和大于第三边,任意两边之差小于第三边。一般用最大边与其他两边和差来比较,用来证明相关不等题目或判断式量正负等。等于的时候,三条边重合,成为一条长度等于最长边的线段。
三角形是由同一平面内不在同一直线上的三条线段首尾顺次连接所组成的封闭图形,在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形),按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
三边相等的三角形是多少度
三边相等的三角形是60度,属于等边三角形。等边三角形(又称正三边形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。
三角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
三角形什么大于第三边
三角形两边之和大于第三边。由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫作三角形。三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。在数学、建筑学有应用。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
锐角三角形三边平方关系
锐角三角形三边平方关系:任意两边的平方和都大于第三边的平方。三个内角都是锐角的三角形叫做锐角三角形。大于0°而小于90°的角,叫做锐角。锐角三角形和钝角三角形统称斜三角形。
锐角三角形的性质:
1、锐角三角形的三个角都是锐角(定义);
2、设锐角三角形的三边ac2;
3、锐角三角形的每条高均在三角形内;
4、三个内角和180°,外角和360°;
5、设锐角三角形的三边为a、b、c,则a+b>c(三角形共性)。
特殊直角三角形三边关系
特殊直角三角形三边关系是直角三角形两直角边的平方和等于斜边的平方。直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。三角形是由同一平面内不在同一直线上的三条线段首尾顺次连接所组成的封闭图形,在数学、建筑学有应用。平面上三条直线或球面上三条弧线所围成的图形,三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。
三角形任意两边的和什么第三边
三角形的任意两边之和于第三边,任意两边只差小于第三边;同时满足这两个条件,才能构成三角形。一般用最大边与其他两边和差来比较,用来证明相关不等题目或判断式量正负等。
角形是由同一平面内不在同一直线上的三条线段‘首尾’顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形,等腰三角;按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
组成三角形三边的条件有哪些
组成三角形三条的条件:两边之和大于第三边,两边之差小于第三边。
三角形是由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
含有30度的直角三角形三边关系
斜边是短边的2倍,即2:1,第三边√3,即三边的比是:1:√3:2。直角三角形斜边的中线等于斜边的一半,这是初中阶段比较重要的一个性质,“30度所对的边是斜边的一半”这个性质就是根据“直角三角形斜边的中线等于斜边的一半”证出来的!
30度的直角三角形三边关系
在30度的直角三角形中三边的关系:
(1)两条直角边长的平方和等于斜边长的平方;
(2)30°角所对的直角边长是斜边长的一半。
30度的直角三角形的三条边的比例为1:√3:2。30度的直角三角形是一个特殊的直角三角形,其三个角的分别为30度、60度和90度,根据三角形的正弦定理可以知道,三角形角的对应正弦函数值等于对应边的比,即:sin30:sin60:sin90=1:√3:2。
直角三角形中30度、60度、90度所对应的边长比例关系为1:√3:2。
解:令直角三角形30°角对应的边长为a,60°角对应的边长为b,90°对应的斜边长为c。
那么根据三角形的正玄定理可得:
a/sin30°=b/sin60°=c/sin90°,
即a/(1/2)=b/(√3/2)=c/1。
那么可得a=c/2,b=√3*c/2。
因此a:b:c=c/2:√3*c/2:c=1/2:√3/2:1=1:√3:2。
三角形的任意两边之和什么第三边
三角形的任意两边之和大于第三边。三角形是由同一平面内不在同一直线上的三条线段首尾顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)。
平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形、平行四边形等都是基本的平面图形。平面图形是平面几何研究的对象。