三角函数之间的对应关系公式?
三角函数关系公式
(一)倒数关系
①tanαcotα=1
②sinαcscα=1
③cosαsecα=1
(二)商数关系
tanα=sinα/cosα
cotα=cosα/sinα
(三)平方关系
①sin2α+cos2=1
②1+tan2α=sec2α
③1+cot2α=csc2α
2三角函数两角和与差公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cossinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
3三角函数积化和差公式
sinAsinB=-[cos(A+B)-cos(A-B)]/2
cosAcosB=[cos(A+B)+cos(A-B)]/2
sinAcosB=[sin(A+B)+sin(A-B)]/2
cosAsinB=[sin(A+B)-sin(A-B)]/2
4三角函数和差化积公式
sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
同角三角函数的基本关系公式
sinA=a/c、cosA=b/c、tanA=a/b、cotA=b/a。
三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
三角函数公式三边关系
sinA=∠A的对边长/斜边长,sinA记为∠A的正弦;cosA=∠A的邻边长/斜边长,cosA记为∠A的余弦;tanA=∠A的对边长/∠A的邻边长,tanA记为∠A的正切。
三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数与反三角函数的关系公式
三角函数与反三角函数的关系公式:sin(A+B)=sinAcosB+cosAsinBsin(A-B)。反三角函数是一种基本初等函数。它是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx,反正割arcsecx,反余割arccscx这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
同角三角函数的基本关系与诱导公式
三角函数倒数关系:tanαcotα=1;sinαcscα=1;cosαsecα=1。
三角函数商数关系:tanα=sinα/cosα;cotα=cosα/sinα。
平方关系:sin2α+cos2α=1;1+tan2α=sec2α;1+cot2α=csc2α。
诱导公式:
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)。
cos(2kπ+α)=cosα(k∈Z)。
tan(2kπ+α)=tanα(k∈Z)。
cot(2kπ+α)=cotα(k∈Z)。
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα。
cos(π+α)=-cosα。
tan(π+α)=tanα。
cot(π+α)=cotα。
公式三:任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):
sin(-α)=-sinα。
cos(-α)=cosα。
tan(-α)=-tanα。
cot(-α)=-cotα。
三角函数的倒数关系公式
三角函数的倒数关系公式:sinαcscα=1、cosαsecα=1、tanαcotα=1。三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
余弦函数的倒数称为割线函数。在一种推导中,割线是从xy-平面的原点绘制的,并且割开了单位圆,成为由线x=1形成的三角形的斜边,该直线与单位圆垂直切线(切线)作为它的一面。割线的意思是“割”。使用相似三角形的性质,可以证明斜边(长度为1)和余弦(基数)的比率等于从原点开始与(相交)线相交的(割线)的比率。切线(正割线)及其“底”为1。
三角函数之间的转换关系
三角函数之间的转换关系:
cos(a+b)=cosxcosb-sinxsinb;
cos(a-b)=cosxcosb+sinxsinb;
sin(a+b)=sinxcosb+cosxsinb;
sin(a-b)=sinacosb-cosasinb;
tan(a+b)=(tana+tanb)/(1-tanatanb);
tan(a-b)=(tana+tanb)/(1+tanatanb)。
三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
互余两角的三角函数关系
互余两角的三角函数关系为:任意锐角的正弦值等于余角的余弦值,任意锐角的余弦值等于余角的正弦值,任意锐角的正切值等于余角的余切值,任意锐角的余切值等于余角的正切值。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
同角三角函数基本关系及诱导公式
同角三角函数的基本关系主要用于:己知某一角的三角函数,求其它各三角函数值;三角恒等式;化简三角函数式;证明
:三角变换中要注意“1”的妙用,解决某些问题若用“1”代换,如I=sinu+cosu,=L则可以事半功倍:同时三角变换中还要注意使用“化弦法”、消去法等。
反三角函数与三角函数的关系
反三角函数与三角函数的关系:两角和公式sin(A+B)=sinAcosB+cosAsinB,sin(A-B)=sinAcosB-sinBcosA,cos(A+B)=cosAcosB-sinAsinB,cos(A-B)=cosAcosB+sinAsinB。
反三角函数是一种基本初等函数。它是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx,反正割arcsecx,反余割arccscx这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。
三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
三角函数平方关系
三角函数平方关系:sin^2(α)+cos^2(α)=1cos^2(a)。三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。