广义相对论的建立:
1905年,爱因斯坦发表了关于狭义相对论的第一篇文章后(即《论动体的电动力学》),并没有立即引起很大的反响。然而德国物理学的权威人士普朗克注意到了他的文章,认为爱因斯坦的职业可以与哥白尼相媲美,正是由于普朗克的推动,相对论很快成为大众研究和讨论的课题,爱因斯坦也受到了学术界的注意。
1907年,爱因斯坦听从友人的建议,提交了那篇著名的论文申请联邦工业大学的编外讲师职位,但得到的答复是论文无法领悟。虽然在德国物理学界爱因斯坦已经很有名气,但在瑞士,他却得不到一个大学的教职,许多有名望的人开始为他鸣不平,1908年,爱因斯坦终于得到了编外讲师的职位,并在第二年当上了副教授。1912年,爱因斯坦当上了教授,1913年,应普朗克之邀担任新成立的威廉皇帝物理研究所所长和柏林大学教授。
在此期间,爱因斯坦在考虑将已经建立的相对论推广,对于他来说,有两个难题使他不安。第一个是引力难题,狭义相对论对于力学、热力学和电动力学的物理规律是正确的,然而它不能解释引力难题。牛顿的引力学说是超距的,两个物体之间的引力影响在瞬间传递,即以无穷大的速度传递,这与相对论依据的场的见解和极限的光速冲突。第二个是非惯性系难题,狭义相对论与以前的物理学规律一样,都只适用于惯性系。但事实上却很难找到真正的惯性系。从逻辑上说,一切天然规律不应该局限于惯性系,必须考虑非惯性系。
狭义相对论很难解释所谓的双生子佯谬,该佯谬说的是,有一对孪生兄弟,哥在宇宙飞船上以接近光速的速度做宇宙航行,根据相对论效应,高速运动的时钟变慢,等哥哥回来,弟弟已经变得很老了,由于地球上已经经历了几十年。而按照相对性原理,飞船相对于地球高速运动,地球相对于飞船也高速运动,弟弟看哥哥变年轻了,哥哥看弟弟也应该年轻了。这个难题简直没法回答。实际上,狭义相对论只处理匀速直线运动,而哥哥要回来必须经过一个变速运动经过,这是相对论无法处理的。正在大众忙于领悟相对狭义相对论时,爱因斯坦正在继续完成广义相对论。
1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原理的想法又不断提高。他以惯性质量和引力质量成正比的天然规律作为等效原理的根据,提出在无限小的体积中均匀的引力场完全可以代替加速运动的参照系。爱因斯坦并且提出了封闭箱的说法:在一封闭箱中的观察者,不管用何技巧也无法确定他究竟是静止于一个引力场中,还是处在没有引力场却在作加速运动的空间中,这是解释等效原理最常用的说法,而惯性质量与引力质量相等是等效原理一个天然的推论。
1915年11月,爱因斯坦先后向普鲁士科学院提交了四篇论文,在这四篇论文中,他提出了新的看法,证明了水星近日点的进动,并给出了正确的引力场方程。至此,广义相对论的基本难题都解决了,广义相对论诞生了。1916年,爱因斯坦完成了长篇论文《广义相对论的基础》,在这篇文章中,爱因斯坦将以前适用于惯性系的相对论称为狭义相对论,将只对于惯性系物理规律同样成立的原理称为狭义相对性原理,并进一步表述了广义相对性原理:物理学的定律必须对于无论哪种方式运动着的参照系都成立。
爱因斯坦的广义相对论认为,由于有物质的存在,空间和时刻会发生弯曲,而引力场实际上一个弯曲的时空。爱因斯坦用太阳引力使空间弯曲的学说,很好地解释了水星近日点进动中一直无法解释的43秒。广义相对论的第二大预言是引力红移,即在强引力场中光谱向红端移动,20年代,天文学家在天文观测中证实了这一点。广义相对论的第三大预言是引力场使光线偏转,最靠近地球的大引力场是太阳引力场,爱因斯坦预言,遥远的星光如果掠过太阳表面将会发生一点七秒的偏转。1919年,在英国天文学家爱丁顿的鼓动下,英国派出了两支远征队分赴两地观察日全食,经过认真的研究得出最后的是:星光在太阳附近的确发生了一点七秒的偏转。英国皇家学会和皇家天文学会正式宣读了观测报告,确认广义相对论的是正确的。会上,著名物理学家、皇家学会会长汤姆孙说:“这是自从牛顿时代以来所取得的关于万有引力学说的最重大的成果”,“爱因斯坦的相对论是人类想法最伟大的成果其中一个”。爱因斯坦成了新闻人物,他在1916年写了一本通俗介绍相对论的书《狭义与广义相对论浅说》,到1922年已经再版了40次,还被译成了十几种文字,广为流传。
相对论的意义:
狭义相对论和广义相对论建立以来,已经过去了很长时刻,它经受住了操作和历史的考验,是大众普遍承认的真理。相对论对于现代物理学的提高和现代人类想法的提高都有巨大的影响。相对论从逻辑想法上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力学说,而牛顿引力学说只是它的一级近似。这就从根本上解决了以前物理学只限于惯性系的难题,从逻辑上得到了合理的安排。相对论严格地考察了时刻、空间、物质和运动这些物理学的基本概念,给出了科学而体系的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。
狭义相对论给出了物体在高速运动下的运动规律,并提示了质量与能量相当,给出了质能关系式。这两项成果对低速运动的宏观物体并不明显,但在研究微观粒子时却显示了极端的重要性。由于微观粒子的运动速度一般都比较快,有的接近甚至达到光速,因此粒子的物理学离不开相对论。质能关系式不仅为量子学说的建立和提高创造了必要的条件,而且为原子核物理学的提高和应用提供了根据。
对于爱因斯坦引入的这些全新的概念,当时地球上大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。甚至有人说“当时全全球只有两个半人懂相对论”。旧的想法技巧的障碍,使这一新的物理学说直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔物理学奖授予爱因斯坦时,也只是说“由于他对学说物理学的贡献,更由于他发现了光电效应的定律。”对爱因斯坦的诺贝尔物理学奖颁奖辞中竟然对于爱因斯坦的相对论只字未提。(注:相对论没有获诺贝尔奖,一个重要缘故就是还缺乏大量事实验证。)
独立学者灵遁者整理提供。