网友提问:
已知曲线方程,如何求过某点切线方程?
优质回答:
切线方程是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容;在已知曲线方程,如何求过某点切线方程,这也不算很复杂:
整体思路就是:求过曲线外一点的切线方程,通常是先设切点,根据切点参数写出切线方程,再将切点的坐标代入,求出切点参数,最后写出切线方程,
比如y=x^2,用导数求过(2,3)点的切线方程
设切点(m,n), 其中n=m^2
由y’=2x,得切线斜率k=2m
切线方程:y-n=2m(x-m), y-m^2=2mx-2m^2,y=2mx-m^2
因为切线过点(2,3), 所以3=2m*2-m^2,m^2-4m+3=0,m=1或m=3
切线有两条:m=1时,y=2x-1;m=3时,y=6x-9
其他网友观点
先把曲线方程整理成y=f(x)的形式,然后对x求导函数,切点横坐标x0对应的导函数值就是切线的斜率k,然后写出点斜式方程:y-y0=k(x-x0)即可.
以上内容就是小编分享的关于已知曲线方程,如何求过某点切线方程?.jpg”/>